Unit 1
Part 1: Basics of Machine Learning/Data Science
- Data preprocessing
- Feature spaces
- Supervised learning, unsupervised learning
- Exemplary problems: classification, clustering
- Complexity
- Evaluation
Part 2: Quantumcomputing
- Basic theoretical concepts
- Different paradigms: Quantum Gate and Adiabatic
- Quantum Fourier transform
- Quadratic Unconstrained binary optimization (QUBO)
- Advantages over classical
Unit 2
- Clustering needed for quantumccomputing
- Grover algorithm
- Quantum k-Means
- SWAP test
Unit 3
- Parametrized quantum circuits
- Data encoding
- Analyzing parametrized quantum circuits
Unit 4
- Classical support vector machines and kernel trick
- Quantum feature maps
- Train quantum kernels, kernel alignment
- Kernel based versus variational training in terms of circuit evaluations
Unit 5
- Neural networks
- Quantum neural networks (QNNs)
- Use cases of QNNs
- Potential quantum advantages of QNNs
- Informationen zu den Schulungsdozent*innen finden Sie hier.