
Qrisp

High-level programming framework
for quantum computers

What is Qrisp?

Qrisp is a high-level programming language for
working with quantum computers. Qrisp is designed
to enable programmers to write complex quantum
algorithms with the ease of a modern day program-
ming language while still compiling down to the
circuit level.

By automating much of the low-level coding duties, such
as gate-by-gate assembly or qubit management, we aim to
open this field of research to a broad audience of developers.
Qrisp is being developed at Fraunhofer FOKUS funded by the
German ministry for economic affairs and climate action.

Framework structure overview

The central data structure for abstract quantum programming
is the QuantumVariable. The lifetime cycle of QuantumVari-
ables and other aspects are managed by the QuantumSes-
sion class, which manages the interaction with a QPU at the
backend. Due to a sophisticated system for managing Quan-
tumSessions, typically the user does not have to think about
QuantumSession objects and can just use QuantumVariables.

In many cases raw QuantumVariables are not that helpful as
they provide very few advanced data processing capabilities
due to their generality. QuantumVariables can be thought of
as the abstract base class of more specific datatypes.

Qrisp provides 4 advanced quantum data types:

1. QuantumFloat: a datatype to represent and process
numbers to arbitrary precision

2. QuantumBool: a datatype to represent boolean values
3. QuantumChar: a datatype to represent characters
4. QuantumString: a datatype to represent strings

REST-based backend
interface

Blazing fast
Simulator

Full access to the
Python ecosystem

Integrated floating
point arithmetic

Intuitive high-level
coding interface

!"
#
$%
"&

'(
)*
"+
,

QuantumVariable 0

QuantumVariable 1

QuantumSession

QuantumEnvironment level: 2

QuantumEnvironment level: 0

QuantumEnvironment level: 1

QuantumCircuit

QuantumArray

N
etw

o
rk In

terface

Remote Backend

Figure 1: Overview of the Qrisp programming framework

Figure 2: Framework structure overview

QuantumVariables of the same type can be managed in a
class called QuantumArray. This class provides many conve-
nient and established features like slicing or reshaping.

Using the concept of Quantum Environments, it is possible
to program using many of the established paradigms from
classical computing such as conditional execution of blocks
of code (described in ConditionEnvironment).

As most of today’s research on quantum algorithms has been
formulated in terms of quantum circuits, we provide the
Circuit Construction module, which allows the construction
of QuantumCircuits. Constructing QuantumCircuits in Qrisp is
very similar as in Qiskit since the structure and the naming of
the classes and methods are held as close as possible.

To guarantee application-oriented algorithm development
at every stage, Qrisp comes with a network interface for
addressing remote backends. The way this works is that the
backend provider runs a BackendServer on their infrastruc-
ture and the user connects via a BackendClient object. Note
that these classes are only wrappers for an interface gen-
erated by state-of-the art interfacing technology. Further-
more, Qrisp supports running it’s circuits on the backends of
established providers using the VirtualBackend class.

Algorithm development via manual
circuit construction is literally the
slowest, least modular and most
unstructured approach!«

Raphael Seidel,
Senior Scientist at Business Unit SQC

»

More information can be found at:

Why should you use Qrisp over other quantum
frameworks?

With Qrisp, you can concentrate on the crucial aspects of
your code and reduce the burden of overseeing individual
qubits and quantum gates. Due to a sophisticated qubit
management system, recycled quantum resources are
automatically reused across functions, implying Qrisp code
can be modularized effectively. Combined with a typing
system, which is smoothly integrated into the Python
infrastructure, scalable algorithm development is a straight-
forward process. Qrisp is lightweight and fast yielding a
convenient development workflow.

Conclusion

With Qrisp we open the creation of quantum algorithms
to a much broader audience of developers than today. Not
only does this lower the entry barrier significantly but open
new levels of complexity in quantum algorithms, which
might uncover previously unseen quantum advantages.
Qrisp is available as an open-source codebase and open for
contributions!

https://qrisp.eu

https://github.com/fraunhoferfokus/Qrisp

https://www.piveau.de/
https://www.piveau.de/

Contact

Dr.-Ing. Nikolay Tcholtchev

Head of Quality Engineering for

Urban ICT and Quantum Computing

Business Unit SQC

Tel. +49 30 3463-7175

nikolay.tcholtchev@fokus.fraunhofer.de

Sebastian Bock

Senior Scientist

Business Unit SQC

sebastian.bock@fokus.fraunhofer.de

Raphael Seidel

Senior Scientist

Business Unit SQC

raphael.seidel@fokus.fraunhofer.de

Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31

10589 Berlin

www.fokus.fraunhofer.de/en

We

connect
everything

© Fraunhofer FOKUS, Berlin 2023 mfr | 2309 (Fotos:

istockphoto/ koto_feja

mailto:nikolay.tcholtchev%40fokus.fraunhofer.de?subject=
mailto:sebastian.bock%40fokus.fraunhofer.de?subject=
mailto:raphael.seidel%40fokus.fraunhofer.de?subject=
http://www.fokus.fraunhofer.de/en

