
VTT TECHNICAL RESEARCH CENTRE OF FINLAND 

LTD 

A Process for Model 

Transformation Testing 

T. Kanstrén1, M. Chechik2, J-P. Tolvanen3 

 

1 VTT Technical Research Centre of Finland 
2 University of Toronto, Toronto, Canada 
3 MetaCase, Jyväskylä, Finland 



2 20/10/2015 2 

Background 

 A process initially defined while I was visiting at UofT, using 

their Class diagram to ER diagram as a case study in 

Eclipse ATL transformation environment 

 After returning to Finland, extended with a more realistic 

case study of EAST-ADL model transformations in 

MetaEdit+ 

 In both cases, input domain is modelled using OSMO MBT, 

tests generated and executed against the real SUT (MT 

engine), the described process is fully applied and results 

verified in several iterations 

 The paper gives practical experiences on building overall 

process for model transformation testing 



3 20/10/2015 3 

A Model Transformation 

 Use of models as design artifacts increasingly popular,  

 Model Driven Design,  

 Domain Specific Modeling, 

 Model-Based Testing, … 

 Models need to be processed across different tools, 

transformed between abstraction levels, etc. 

 Correctness of model transformation is crucial 

 If one model is wrong, that part of the system is broken 

 If the transformation is wrong, potentially all output is broken 



4 20/10/2015 4 

High-Level Process 

1. Characterize Domain 

2. Create Checks 

3. Execute Tests 

 

 During the first two phases, we build a test model to 

represent our understanding of  

 what the important properties of the transformation are,  

 how they are represented, and  

 how they are verified 

 We then generate and execute tests, refine our 

understanding/test models continuously 

 



5 20/10/2015 5 

Characterize Domain 

 A set of questions to guide the characterization: 

 What is the purpose of the transformation? 

 For each input (meta)model element: 

 Is it relevant (in scope) for the transformation? 

 How is it (or should be) affected by the transformation? 

 What should be produced for it in the output? 

 Does it have any other impact on the transformation? 

 To identify  

 Transformation purpose, the important elements to test 

 To define a set of high-level transformation rules to analyze, 

the effective metamodel, and the coverage criteria 



6 20/10/2015 6 

Coverage Criteria and Tool Support 

 Coverage category combinations 

 Various options (e.g., literature): 

 Generic categories based on any Effective Metamodel (EM) 

 Knowledge based (KB) for specific important elements 

 Our approach: 

 Start with generic options for EM 

 Refine tighter with KB pruning 

 0,1,N/1,2,N, … 

 White-box tools can assist in identifying the (current) EM 

 Also relevant for what is in coverage 

 However, does not tell if the EM is correct 

 



7 20/10/2015 7 

Create Checks 

 Using transformation rules and coverage criteria as input, 

define a set of test oracles for the defined input(s) 

 Combining various types, e.g.,  

 Reference models, e.g., existing production samples 

 Generic checks, e.g., metamodel conformance 

 Rules (invariants) over generated inputs vs outputs 

 Our process (iteratively repeated): 

 Define a check at least for each transformation rule. 

 Combine checks for the same elements. 

 Map the checks to the concrete output. 

 Review with domain expert. 



8 20/10/2015 8 

Create & Execute Tests 

 Create a set of tests for  capture the domain 

characterization as well as the checks required 

 Reference inputs and outputs as a starting point 

 Large scale variation with test generators where needed 

 Aiming to cover the coverage criteria defined 

 

<?xml version="1.0" encoding="UTF-8"?> 

<gxl xmlns="http://www.metacase.com/gxlGOPRR"> 

  <graph id="_19_99637" typeName="DesignFunctionType"> 

    <slot name="FunctionName"> 

      <value> <string>output1</string> </value> 

    </slot> 

    <slot name="Description"> 

…. 

mep51.exe  loginDB:user:password: 

EAST-ADL_VTT sysadmin sysadmin 

setProject: EAST-ADL fileInPatch: 

input1.mxm forAll:run: 

DesignFunctionType mdlFileExport 

logoutAndExit 

 

python checker1.py 

1. Generate 

input + checks 

2. Execute 

test script 

3. Input 

model 
5. Run 

checks 

4. Execute 

transformation 



9 20/10/2015 9 

Example: EAST-ADL ME+ to Simulink MT 

 EAST-ADL is an Architecture Definition Language (ADL) 

for the automotive domain 

 Typical use case: 

 Use MetaEdit+ with EAST-ADL to define static architecture 

 Use Simulink to describe the component behavior 

 MetaEdit+ provides 3 transformations 

 MetaEdit+ to Simulink 

 Simulink back to MetaEdit+ 

 Verify that the two are still a match 

 We take an example subset to illustrate the process 



10 20/10/2015 10 

EAST-ADL Metamodel (partial, ~5%) 



11 20/10/2015 11 

Transformation Effective Metamodel 



12 12 20/10/2015 

Rules 

 ~70 rules identified 

 Examples from transforming ME+ 

DFP’s to Simulink Blocks: 
 For each DFP, create a Block and for this 

 Add BlockType with static value 

ModelReference 

 Add Name, with value of Short name from 

DFP. 

 Add SID, with increasing unique integer. 

 If Description is defined for DFP, add 

Description with this value from DFP. 

 Add AttributeFormatString, with value of 

Name from DFP. 

 Add ModelNameDialog, with value of 

FunctionName from DFP. 

 Add ModelReferenceVersion with static 

value 1.0 

 

 Add List and inside it 

 Add ListType with static value 

InputPortNames 

 For each InFlowPort in DFP 

 Add port X where X is an increasing 

integer, with value of Short name from 

InFlowPort 

 For each InPowerPort in DFP, do the 

same as for InFlowPort 

 For each ServerPort in DFP, do the same 

as for InFlowPort 

 Add List and inside it 

 Add ListType with static value 

outputPortNames 

 For each OutFlowPort in DFP, 

 Add port X where X is increasing integer, 

with value of Short name from 

OutFlowPort 

 For each OutPowerPort in DFP, do the 

same as for OutFlowPort 

 For each ClientPort in DFP, do the same 

as for OutFlowPort 



13 20/10/2015 13 

Example: A brakecontroller MT 

MetaEdit+ 

Simulink 



14 14 20/10/2015 

Test Model Elements for ME+ to Simulink 

 Adaptation of sequence/ 

state-based test generation 

 Traditionally generating 

sequences of test steps, 

interacting with the SUT in 

different states 

 Instead, model steps build 

test models, and MT is 

executed once in the end 

 Coverage measured as 

model element combinations 

Rules Actions 

Always allowed Create a DFT 

Always allowed Create a DFP 

DFT’s > 0 && 

unlinked DFP’s > 0 

Link DFT to DFP 

DFT’s > 0 Add InFlowPort to 

DFT 

DFT’s > 0 Add OutFlowPort to 

DFT 

DFT’s with no 

description > 0 

Add description to 

DFT 

Example rules & actions: 



15 15 20/10/2015 

Coverage Elements 

  Combinations of model 

elements as seen important 

 Base element count 

 DFT/DFP 

 DFP count + port type 

counts 

 DFP count + port type 

counts + connection 

counts 

 ~300 combinations, fully 

covered in 25 tests 

Model Element Categories 

DFP 1,2,N 

InFlows/DFP 0,1,N 

OutFlows/DFP 0,1,N 

InPowers/DFP 0,1,N 

OutPowers/DFP 0,1,N 

Servers/DFP 0,1,N 

Clients/DFP 0,1,N 

Description 0,1 

Example coverage categories 



16 16 20/10/2015 

Example Generated Model 

<?xml version="1.0" encoding="UTF-8"?> 

<gxl xmlns="http://www.metacase.com/gxlGOPRR"> 

  <graph id="_19_99637" typeName="DesignFunctionType"> 

    <slot name="FunctionName"> 

      <value> <string>output1</string> </value> 

    </slot> 

    <slot name="Description"> 

      <value> <text>Holder for everything else</text> </value> 

    </slot> 

  <object id="178247" typeName="DesignFunctionPrototype"> 

    <slot name="Short name"> 

      <value> <string>DFP1</string> </value> 

    </slot> 

    <slot name="Description"> 

      <value> <text>Description178247</text> </value> 

    </slot> 

    <graph id="178272" typeName="DesignFunctionType"> 

      <slot name="FunctionName"> 

        <value> <string>DFT1</string> </value> 

      </slot> 

      <slot name="Description"> 

        <value> <text>g149M</text> </value> 

      </slot> 

      <object id="178274" typeName="InFlowPort"> 

        <slot name="Short name"> 

          <value> <string>InFlow1</string> </value> 

        </slot> 

       …. 

Coverage criteria met with this model: 

• 1 Client – server line 

• N InPower – OutPower lines 

• N – ” – lines with single input 

• N undefined DFT for DFP 

• N unconnected lines (various type) 

• …. 



17 17 20/10/2015 

Example generated checks 

def check(value, error): 

dfts = glob.glob("reports/DFT*.mdl") 

dft_count = len(dfts) 

print("DFT count: expected "+str(2)+", found:"+str(dft_count)) 

check(dft_count == 2, "Number of DFT output should be 2, was 

"+str(dft_count)) 

dfp_inports = {"DFP10":0, "DFP9":10, "DFP8":10, "DFP7":0, 

"DFP6":5, "DFP5":5, "DFP4":10, "DFP3":5, "DFP2":5, "DFP1":10} 

dfp_outports = {"DFP10":0, "DFP9":6, "DFP8":6, "DFP7":0, 

"DFP6":9, "DFP5":9, "DFP4":6, "DFP3":9, "DFP2":9, "DFP1":6} 

dfp_descriptions = {"DFP1":"Description178247", 

"DFP2":"Description178251", "DFP3":"Description178253", 

"DFP4":"Description178256", "DFP5":"Description178258", 

"DFP6":"Description178260", "DFP7":"Description178264", 

"DFP8":"Description178267", "DFP9":"Description178268", 

"DFP10":None} 

lines_expected = ["DFP5.7->DFP8.4", "DFP5.8->DFP8.3", 

"DFP5.9->DFP8.3", "DFP5.1->DFP1.7"] 

with open("reports/output1.mdl") as f: 

    content = f.readlines() 

in_line = False 

for line in content: 

    l = line.strip() 

    if l.startswith("BlockType"): 

        check(l.endswith("ModelReference"), "BlockType should 

always be 'ModelReference'. For "+str(name)+" found "+l) 

…. 

mep51.exe  loginDB:user:password: EAST-ADL_VTT 

sysadmin sysadmin setProject: EAST-ADL fileInPatch: 

input1.mxm forAll:run: DesignFunctionType mdlFileExport 

logoutAndExit 

 

python checker1.py 



18 20/10/2015 18 

Experiences 

 Issues found in all stages of the process  

 Modeling phase: ambiguities, misunderstandings and 

missing requirements 

 Manually created and reference models find the most 

obvious issues in the implementation.  

 Large scale, automatically generated tests are best at 

discovering issues with complex interactions and 

combinations of different elements. 

 The modeling environment can already be used to 

constrain much of the input space beyond the metamodel 



19 19 20/10/2015 

Error Types and Handling 

 DSL constraints prevent creating illegal 

inputs 

 DSL warns about illegal input but 

allows creating it and running the 

transformation 

 DSL allows creating illegal input but 

prevents running the transformation 

 Output is illegal but target tool (TT) 

opens it (showing errors) 

 Output is illegal and TT does not even 

open it 

 Output is illegal and TT does not 

recognize it 

 Model is legal for source metamodel 

but not on target metamodel 

Flow to Power not possible, InFlow 

to InFlow not possible 

Prototype does not have type 

defined, port does not have data 

type 

 (not in this case), but missing 

relationship name in XML export 

Type information deleted from 

prototype, still connections exist 

Transformation produces broken 

output, invalid elements, etc. 

End tag etc missing, input is garbage 

A port has several incoming flow 

connections: OK in EAST-ADL, not 

in Simulink) 

 



20 20/10/2015 20 

Conclusions 

 The process is a result of performing systematic MT testing 

using MBT tools, and distilling a generic process 

 Requires broad expertise and effort 

 Depends on how critical you see your transformation 

 Broader, more cost-effective application could be achieved 

via integrating approach with DSM workbench tooling 

 Already access to metamodels, rules, etc. 

 For example, embed generators, build tests by picking 

metamodel elements and rules 

 Example generator code available at: 

https://github.com/mukatee/dsm-mbt-example  

https://github.com/mukatee/dsm-mbt-example
https://github.com/mukatee/dsm-mbt-example
https://github.com/mukatee/dsm-mbt-example
https://github.com/mukatee/dsm-mbt-example
https://github.com/mukatee/dsm-mbt-example

