
Fraunhofer FOKUS

Institut für Offene Kommunikationssysteme

Security Testing Approaches
System Testing and Validation Workshop (STV19)

QRS Conference

Martin A. Schneider | July 24th 2019 | Sofia, Bulgaria

Fraunhofer FOKUS

Institute for Open Communication Systems

©
 M

ichael Zalew
ski/ Fraunhofer FO

KU
S



Agenda

1 Introduction

2 Static Security Testing

Dynamic Security Testing

4 Outlook

| July 24th 2019 | Security Testing Approaches2

3



1Introduction

| July 24th 2019 | Security Testing Approaches3



CIA

C = Confidentiality
I = Integrity

A = Availability

What is Security?

| July 24th 2019 | Security Testing Approaches4



What is Security?

| July 24th 2019 | Security Testing Approaches5

Source: ISO/IEEE 25010 (2011) System and software quality models



“Type of testing conducted to evaluate the degree to which a test item, and associated data and 
information, are protected so that unauthorized persons or systems cannot use, read, or modify them, and 
authorized persons or systems are not denied access to them.”

IEEE 29119 (2013) Software and systems engineering 
– Software testing – Part 1: Concepts and definitions

“Testing to determine the security of the software product.”
ISTQB Glossary v3.2.1 (2019)

“[…] include:
§ Risk Assessment and Risk-based Security Testing
§ Functional Testing of Security Features
§ Performance Testing
§ Robustness Testing
§ Penetration Testing”

ETSI TR 101 583 V1.1.1 (2015-03): 
Methods for Testing and Specification (MTS): Security Testing - Basic Terminology

Introduction: Security Testing

| July 24th 2019 | Security Testing Approaches6



“Weakness of an asset or control that can be exploited by one or more threats“
ISO/IEC 27005 (2011) Information technology 

– Security techniques – Information security risk management

“A weakness in the system that could allow for a successful security attack.”
ISTQB Glossary v3.2.1 (2019)

“any weakness in software that can be used to cause a failure in the operation of the software”
ETSI TR 101 583 V1.1.1 (2015-03): 

Methods for Testing and Specification (MTS): Security Testing - Basic Terminology

Introduction: Vulnerability

| July 24th 2019 | Security Testing Approaches7



Black-box security testing
testing without reference to the internal structure of test item
White-box security testing
testing based on an analysis of the internal structure of the test item
Gray-box security testing
having some internal information of the test item

Static security testing
test item is not executed whilst testing it for the non-functional quality property security
Dynamic security testing
test item is executed, e.g. a component, software or system

Introduction

| July 24th 2019 | Security Testing Approaches8



2Static Security Testing

| July 24th 2019 | Security Testing Approaches9



Reviews
Rule checking
Abstract interpretation
Symbolic execution
Model checking

Static Security Testing

| July 24th 2019 | Security Testing Approaches10



3Dynamic Security Testing

| July 24th 2019 | Security Testing Approaches11



Functional Testing of Security Features
Performance Testing

Robustness Testing ⇨ Fuzz Testing

Penetration Testing

Dynamic Security Testing

| July 24th 2019 | Security Testing Approaches12



fuzzing is about injecting invalid or 
unexpected inputs
- to obtain unexpected behavior
- to identify errors and potential vulnerabilities
interface robustness testing
fuzzing is able to find (0day-) vulnerabilities, 
e.g.
- crashes
-denial of service
- security exposures
-performance degradation
highly-automated black box approach

Fuzzing

| July 24th 2019 | Security Testing Approaches13

se
e 

al
so

: T
ak

an
en

, A
., 

D
eM

ot
t, 

J.
, M

ille
r, 

C
.: 

Fu
zz

in
g 

fo
r S

of
tw

ar
e 

Se
cu

rit
y 

Te
st

in
g 

an
d 

Q
ua

lit
y 

As
su

ra
nc

e.
 A

rte
ch

 H
ou

se
, B

os
to

n 
(2

00
8)

specified
functionality

negative input space 
(infinite),
target of fuzzing

target of e.g.
functional testing



Random-based fuzzers 
- nearly no protocol knowledge
Template-based fuzzers
- use samples as starting point for mutation

Block-based fuzzers
- break messages down into static and dynamic parts an fuzz only dynamic parts

Dynamic Generation/Evolution-based fuzzers
- employ model inference algorithm to learn the test model and fuzz implicitly
Model-based fuzzers
- employ models of the input domain for generating systematic, non-random test cases

Categorization of Fuzzers

| July 24th 2019 | Security Testing Approaches14

dum
b                               sm

art



model-based fuzzers employ models of the 
input domain for generating systematic, non-
random test cases, e.g.,
-Context-free grammars
- state machines
- stochastic models

the model is used to generate complex 
interaction with the SUT

employ fuzzing heuristics to reduce the input 
space of invalid and unexpected inputs

model-based fuzzers finds defects
which human testers would fail to find

Model-Based Fuzzing

| July 24th 2019 | Security Testing Approaches15

NEGATIVE INPUT SPACE POSITIVE INPUT SPACE

VULNERABILITIES

Model-Based Fuzzing

Random Fuzzing

unexpected
inputs, e.g. 
SQL 
injection

SP
EC

IF
IC

IE
D

 IN
PU

T 
SP

A
C

E

invalid inputs, 
e.g. buffer

overflow



Fuzzing Approaches

| July 24th 2019 | Security Testing Approaches16

white-box fuzzing

constraint 
solving2

black-box fuzzing

samples/
templates 
(valid data)

path execution 
constraints

fuzzed
data

mutated path 
constraints

constraint
negation

mutation generation

corpus 
distillation

mutated 
specification

formal 
specification1

mutationminimum set
of samples

symbolic 
execution

1 e.g., grammars, models
2 may use a grammar additionally

GENERATIONAL FUZZING

MUTATIONAL FUZZING

generation mutationvalid 
samples

mutation



Test cases are generated by fuzzing valid sequences, e.g., functional test cases.
Behavioral fuzzing is realized by changing the order and appearance of messages in two 
ways
-by rearranging messages directly
-by modifying control structures

Invalid sequences are generated by applying fuzzing operators to a valid sequence.

Model-Based Behavioral Fuzzing

| July 24th 2019 | Security Testing Approaches17

Client Apache

1: GET /infotext.html HTTP/1.1

2: Host: www.example.net

valid sequence

Repeat
Message
2: Host

Behavioural
Fuzzing

Fuzzer Apache

1: GET /infotext.html HTTP/1.1

2: Host: www.example.net

invalid sequence

3: Host: www.example.net



Selecting an appropriate fuzzing approach
Test automation and dealing with invalid values

⇨ Coverage and stop criteria
⇨ Repeatability
⇨ Checksums, encryption/signatures, length fields
⇨ Test oracle problem

Fuzz Testing: Challenges & Pitfalls

| July 24th 2019 | Security Testing Approaches18



Coverage of previous vulnerabilities measures the occurrences of revealed vulnerabilities that 
have already been known before

Interface coverage indicates the number of the test item's interfaces that are targeted by the fuzzing 
process

Specification coverage similar to interface coverage

Input space coverage measures the volume of the potential fuzz test cases

Code coverage measures the percentage of the test item's code that has been executed while 
processing the fuzz test cases

Stop criteria minimum of 500,000 iterations and having at least 250,000 iterations since the last bug 
was found for file fuzzing (Microsoft)

There are no fixed numbers and rules!

Coverage and Stop Criteria

| July 24th 2019 | Security Testing Approaches19



crucial property for fuzzing 
required for analysis, debugging purposes, retesting and regression testing. 

can be achieved by
seed for RNG: execution time for a large set of test cases
complete logging: large amount of logging data

many fuzzing approaches rely to a certain degree on randomness
crashes may happen after a large bunch of test cases has been executed
race conditions

Repeatability

| July 24th 2019 | Security Testing Approaches20



Random variation

Samples
heterogeneity and diversity and uniform distribution 
Checksums, encryption/signatures, length fields

Further Challenges

| July 24th 2019 | Security Testing Approaches21

partial input space

inputs that trigger a 
vulnerability

inputs generated by 
determistic heuristics

inputs generated by 
determistic heuristics

inputs covered 
including small random 
variation

inputs generated by 
determistic heuristics

inputs covered 
including large random 
variation



make traditional data fuzzing widely available

allow an easy integration into existing tools

without deep knowledge about fuzz data generation

allow data fuzzing without the need for

-making familiar with a specific fuzzing tool
- integrating further fuzzing tools into the test process

approach: didn’t reinvent the wheel, used the potential of existing fuzzing tools (Peach, Sully)

supports regular expressions, grammars (ABNF), complex data types

basic version available on GitHub: https://github.com/fraunhoferfokus/Fuzzino/

Fuzzino

| July 24th 2019 | Security Testing Approaches22

https://github.com/fraunhoferfokus/Fuzzino/


functional testing:
expected response for each stimulus 
to determining the test verdict
non-functional, e.g. security testing:
specifying any exceptional system behavior is often infeasible
vulnerabilities do not necessarily show themselves via the test item’s stimulated interface

verdict arbitration cannot rely solely on the immediate responses of the test item 
requires additional observation mechanisms
monitoring the test item at runtime

Test Oracle Problem

| July 24th 2019 | Security Testing Approaches23



simple methods that assess the test item’s behavior in a black-box manner,
- connectivity checks
- valid case instrumentation

white-box approaches 
- instrumentation: modify the code of the test item in order to get more insights in the test item’s 

internal state
- library interception: link against specialized memory allocation libraries
- virtualized environment: observe the interaction between the hardware, operating system and the

test item
-most common approach: code coverage
-good starting point
-don’t rely on this

Test Oracle Problem: Monitoring the Test Item

| July 24th 2019 | Security Testing Approaches24



Combination of static and dynamic security testing
validate results from static analysis with dynamic security testing
distinguish true positives from false positives

Artificial Intelligence and Machine Learning
using ML for testing, e.g. for the test oracle problem
security testing for ML components and systems

Current Trends

| July 24th 2019 | Security Testing Approaches25



Human Factors

| July 24th 2019 | Security Testing Approaches26

source: xkcd, a webcomic of romance, sarcasm, math, and language https://xkcd.com/538

https://xkcd.com/538


Fraunhofer Institute for
Open Communication Systems FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany
info@fokus.fraunhofer.de
www.fokus.fraunhofer.de

Martin A. Schneider
Phone: +49 (30) 3463-7383

martin.schneider@fokus.fraunhofer.de

Thank you for your attention!


